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An interval algebra is an interval from zero to some positive element in a 
partially ordered Abelian group, which, under the restriction of the group 
operation to the interval, is a partial algebra. In this paper we study interval 
algebras from a categorical point of view, and show that Cartesian products and 
horizontal sums are effective as categorical products and coproducts, respec- 
tively. We show that the category of interval algebras admits a tensor product, 
and introduce a new class of interval algebras, which are in fact orthoalgebras, 
called x-algebras. 

1. I N T R O D U C T I O N  

By an interval algebra, we mean an interval G - [ 0 ,  u] = 
{gEGI0 - g -< u} in a partially ordered Abelian group G, organized into a 
partial algebra under  the partially defined binary operat ion ~ obtained by 
restriction to G § u], o f  the g roup  operat ion + on G. The proto type  for 
such an algebra is ~ +[0, ~], where ~ is the additive group o f  self-adjoint 
operators  on a Hilbert space. We recall that  elements o f  ~:  +[0, 4] are called 
effects and that  effect-valued measures play an impor tant  role in the 
stochastic approach  to quan tum mechanics (Ali, 1985; Beltrametti and 
Cassinelli, 1981; Prugovecki,  1986; Schroeck and Foulis, 1990). 

In what  follows, we assume the reader is familiar with the material in 
Bennett and Foulis (n.d.) and Foulis and Bennett (1994), al though,  for 
convenience, we shall reproduce some of  the basic definitions and results. 
Effect algebras are mathematical ly  equivalent to the weak or thoalgebras  o f  
Giuntini  and Greuling (1989) and to the D-posets  o f  K 6 p k a  and Chovanec  
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(n.d.), K6pka and Pt~ik (1993) and they are closely related to BZ-posets 
(Cattaneo and Nistico, 1989). Effect algebras in general, and interval 
algebras in particular, can be regarded as (possibly) unsharp quantum 
logics (Della Chiara and Giuntini, 1989; Giuntini and Greuling, 1989). 

Our main purpose in this paper is to show that the Cartesian product 
and horizontal sum of interval algebras are again interval algebras, and 
that there is a tensor product in the category of  interval algebras. For a 
physical interpretation of sums, Cartesian products, and tensor products of 
quantum logics, see Foulis (1989). We also present a number of illustrative 
examples of interval algebras and introduce a new class of orthoalgebras 
called x-algebras. 

2. EFFECT ALGEBRAS 

In Foulis and Bennett (1994) an effect algebra is defined to be an 
algebraic system (A, 0, u, ~ )  consisting of a set A, two special elements 
0, u ~A called the zero and the unit, and a partially defined binary operation 
t~ on A that satisfies the following conditions for all p, q, r~A: 

(i) [Commutative Law] I f p  ~ q  is defined, then q ~)p is defined and 
p ~ q  =q~)p. 

(ii) [Associative Law] If  q~)r is defined and p~(q~)r )  is defined, 
then p ~ q is defined, (p ~ q) ~ r is defined, and 
p ~ ( q  ~)r) = (p ~)q) ~)r. 

(iii) [Orthosupplement Law] For every peA there exists a unique qeA 
such that p ~) q is defined and p ~ q = u. 

(iv) [Zero-Unit Law] If  u ~ p  is defined, then p = 0. 

An effect algebra A is partially ordered by the relation < defined by 
p < q iff there is an r ~A with p ~) r = q. The order structure (A, <: ) of the 
effect algebra A is derived from its algebraic structure (A, 0, u, ~ ) ,  but not 
vice versa. There are posets (partially ordered sets) that can be organized 
into effect algebras in more than one way, and there are posets (even finite 
distributive lattices) that cannot be organized into effect algebras at all. If 
A is totally ordered by <,  it is called a scale algebra. If  (A, < ) is a lattice, 
we say that A is lattice ordered. 

Let A be an effect algebra and let p e A. We define 0p = 0 and lp = p. 
More generally, if n is a positive integer and (n - l)p is defined, we say that 
np is defined iff (n - 1)p 0)p is defined, in which case np ".=(n - 1) 0)p. (We 
use the notation := to mean equals by definition.) The element p is said to 
be isotropic i f fp # 0 and 2p =p ~)p is defined. If  there is a largest positive 
integer n for which np is defined, then n is called the isotropic index ofp.  If  
np is defined for all positive integers n, we say that p has infinite isotropic 
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index. An orthoalgebra (Bennett and Foulis, 1993; Foulis et al., 1992; 
Nevara and Pthk, 1993) may be characterized as an effect algebra with no 
isotropic elements. Therefore, Boolean algebras, orthomodular lattices 
(Beran, 1984; Kalmbach, 1983) and orthomodutar posets (Kalmbach) are 
all special cases of effect algebras. 

Let A, B, and C be effect algebras with units u, v, and w, respectively. 
A mapping tk: A ~ B  is additive iff, whenever p, q~A and p ~ q  is defined 
in A, th(p) ~ q~(q) is defined in B and q~(p ~ q) = ~b(p) ~ ~b(q). An additive 
mapping ~: A-- ,B is called a morphisrn iff q~(u)=v. A mapping 
0: A x B ~ C is a bimorphism iff, for all a e A  and beB,  O( �9 b): A ~ C and 
O(a, �9 ): B ~ C are additive mappings and O(u, v) = w. 

If  K is an Abelian group, a mapping ~b: A --* K is a K-valued measure 
iff, whenever p, q e A  and p ~ q  is defined in A, q~(p ~ q )  = ~b(p) + q~(q). A 
mapping 0: A • B--*K is a K-valued bimeasure iff, for all a e A  and beB,  
0( - ,  b): A ~ K and O(a,. ): B ~ K are K-valued measures. 

A sub-effect algebra of an effect algebra A with unit u is a subset S of 
A such that O, ueS ,  p E S = ~ 3 r e S  with p ~ r = u ,  and p, q e S  with 
p ~3 q = s ~ s e S. Such a sub-effect algebra S is an effect algebra in its own 
right under the restriction to S of O on A. 

3. INTERVAL ALGEBRAS 

If G is an additively-written partially ordered Abelian group, we 
denote the positive cone in G by G + := {g EGI0 ~ g} and, if 0 :~ u EG +, we 
define the interval G+[0, u] := {geG[0 < g <-u}. The interval G+[0, u] can 
be organized into an effect algebra (G § [0, u], 0, u, ~ )  by defining p ~) q iff 
p + q < - u ,  in which case p @ q : = p + q .  An effect algebra of the form 
G § [0, u], or isomorphic to such an effect algebra, is called an interval effect 
algebra or simply an interval algebra for short (Bennett and Foulis, n.d.). 
We use the notation ~+ and R + for the standard positive cones in the 
additive groups Z of  integers and R of real numbers ordered in the usual 
way. 

The following three theorems are proved in Bennett and Foulis (n.d.). 

Theorem 3.1. A sub-effect algebra of an interval algebra is again an 
interval algebra. 

Theorem 3.2. If  A is an interval algebra, there exists a partially 
ordered Abelian group G and an element 0 ~ u~G + such that: 

(i) A = G+[0, u] is an interval algebra. 
(ii) G = G + - G +, i.e., G + is a generating cone in G. 

(iii) Every element g~G + has the form g=a~ + a ~ + . . . + a ~  for a 
finite sequence a~, a 2 . . . . .  a ~ A .  
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(iv) If K is an Abelian group, then every K-valued measure ~: A ~ K 
can be extended to a group homomorphism 4*: 6;--,K. 

The partially ordered Abelian group G in Theorem 3.2, which is 
unique up to an isomorphism, is called the universal group with unit u for 
A. Theorem 3.2 will be our main tool for the study of  sums and products 
of  interval algebras. 

Theorem 3.3. Every scale algebra is an interval algebra in a totally 
ordered Abelian group. Furthermore, if G is a totally ordered Abelian 
group, 0 ~ u ~ G +, and every element in G + is a sum of  a finite sequence of 
elements in A . '=G+[0, u], then G is the universal group for the scale 
algebra A. 

The universal group provides a natural basis for the following nota- 
tion of  a multiple of an interval algebra. 

Definition 3.4. If  G is the universal group with unit u for the interval 
algebra A =G+[O,u] ,  and if n is a positive integer, we define nA ,= 
G+[0, nu]. 

Lemma 3.5. Let G be the universal group with unit u for the interval 
algebra A = G +[0, u] and let n be a positive integer. Then G is the universal 
group with unit nu for hA. 

Proof  Obviously, conditions ( i)-( i i i )  of  Theorem 3.2 are satisfied. To 
prove (iv), suppose K is an Abelian group and ~b: G+[0, nu]--}K is a 
K-valued measure. Let ~k: A ~ K  be the restriction of  4~ to A = G+[0, u]. 
Then g, is a K-valued measure on A, so there is a group homomorphism 
@*: G ~ K that extends ~. If  g~nA,  then g ~ G  +, and it follows from part 
(iii) of  Theorem 3.2 that there is a finite sequence al, a 2 , . . . ,  a, eA  such 
that g = ~ i  ai. Since 0 < g < nu, it follows that g =.al ~)' a2 ~ ) '  " " " ~ ) '  a,, 
where ~ '  denotes orthogonal summation in hA. Therefore, q~(g) = ~ i  q~(a,-) 
and ~ b * ( g ) = ~ i r  ~b(g), so ~O* is an extension of  ~b to 
G. �9 

4. EXAMPLES 

In this section, we give several examples of  interval algebras. These 
examples will help to fix ideas and some of  them are useful for constructing 
counterexamples. 

Example 4.1. The simplest possible interval algebra is. 2-'=Z+[0, 1] = 
{0, 1 }. Note that 2 is the only orthoalgebra that is also a scale algebra and, 
as a poset, 2 is the two-element Boolean algebra. 
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Example 4.2. If n is a positive integer, we define the n-chain 
C,, :=n2 = Z+[0, n]. Evidently, C,, is a scale algebra and, by Lemma 3.5, 
with the usual order is its universal group. Every finite scale algebra with 
n + 1 elements is isomorphic to the n-chain Cn. 

If  r is a positive integer, we define Z r to be the r-fold Cartesian 
product 7/x 7 /x  - . .  • Z of  the additive Abelian group 7/ with itself. The 
standard positive cone (7/+) r in Z r is understood to be the r-fold Cartesian 
product •+ x Z + x , . .  • Z +. 

Example 4.3. If  n~, n2 . . . . .  n~ is a finite sequence of  positive integers, 
we define the rectangular trellis 

RT(nl,  n2 . . . . .  nr) '= (Z+)'[(0,  0 . . . . .  0), (nl, n2 . . . .  , nr)] 

As a poset, RT(nt,  n2, �9 � 9  nr) forms a finite distributive lattice. We define 
the interval algebra 2~.'= RT(nl,  n2 . . . .  , n,) for n~ = n2 . . . .  = n~ = 1. As a 
poser, 2 ~ is isomorphic to the Boolean algebra with 2 ~ elements. 

If  X is a set, we denote by Z x the set of  all functions jr.. X ~ Z  
organized into an additive Abelian group under pointwise operations. The 
standard positive cone in Z x is understood to be the subset (7/+) x consisting 
of  all functions f~7/x such that f ( x ) ~ Z  + for all x~X.  

Example 4.4. Let X be a Stone space, i.e., a compact, Hausdorff, 
t o t a l l y  disconnected topological space. Let G be the subgroup of 7/x 
consisting of  all functions f :  X ~ 2~ that are continuous when Y is given the 
discrete topology. Partially order G by the positive cone G + := G c~(Z+) x 
and let u~G be the constant function u(x) = 1 for all xeX .  Then G is the 
universal group for the interval algebra G +[0, u], and the Boolean algebra 
of  all compact open subsets M of  X is isomorphic as a sublattice to 
G +[0, u] under the mapping M w, XM that carries M into the characteristic 
set function ZM of  M. Thus, by Stone's theorem (Stone, 1936), every 
Boolean algebra can be organized into an interval algebra. 

Example 4.5. The standard scale algebra R+[0, 1] has ~, ordered in the 
usual way, as its universal group. A scale algebra is isomorphic to a 
sub-effect algebra of  ~+[0, 1] iff it has no nonzero elements of infinite 
isotropic index. 

If  G and H are partially ordered Abelian groups, the group 
P := G x H, partially ordered by the positive cone 

P+ := {(g, h)~G x HIO~g~G + or (g = 0  and hEH+)}  

is called the lexicographic product of G and H. If  G and H are totally 
ordered, so is their lexicographic product. 

Example 4.6. Let 7/be ordered by the standard positive cone ~+ and 
let P : =  7/• 7 / b e  the lexicographic product. Then, in the scale algebra 
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A ,=P+[(0 ,  0), (1, 0)], every element of  the form (0, k), k e Z  +, has infinite 
isotropic index. By Theorem 3.3, P is the universal group for A. 

Example 4, 7. Let Z be ordered by the standard positive cone Z +, let 
0 ~ m, n~Z +, let 7/m denote the additive group of  integers modulo m 
partially ordered by the trivial cone (7 / , , )+= {0}, and let P,=Z x Z,, be 
the lexicographic product. We define the polychain of  height n and width m 
by Cn.m . '=P+[(0, 0), (n, m -  1)]. For m = 2, we define the diamond by 
D. '=P+[(0 ,  0), (2, 0)]. The diamond D and C2,2 are isomorphic as posets, 
but  not as effect algebras, whereas C2.2 and 22 are isomorphic as effect 
algebras. 

The polychains Cn,,, are mainly useful for constructing counterexamples. 
As a poset, the elements of  Cn.m are arranged in n + 1 "levels" with 0 alone 
in the bottom level, (n, m - 1) alone in the top level, and m elements in 
each of  the n - 1 additional levels. Distinct elements in each level are 
incomparable, whereas every element in each level is less than every 
element in the next higher level. For n > 3, it can be shown that the 
lexicographically ordered group Z x Zm in Example 4.7 is the universal 
group for C,.m and Z x 7/2 is the universal group for the diamond D; 
however, 7 /x  7/2 is not the universal group for C2.2. 

Example 4.8. Let ~ be a Hilbert space and let f /  be the partially 
ordered real Banach space of  all self-adjoint operators on ~r The interval 
algebra g ( ~ ) . . =  f /  § ~], called the standard effect algebra on A~', supplies 
much of  the motivation for the study of  effect algebras. If  0 ~ TeS(~,~), the 
isotropic index of  T is the largest positive integer n such that the spectrum 
of  T is contained in the interval [0, 1/n]. The sub-effect algebra P(A~') of  
8 ( .~ )  consisting of  all idempotents in 8(Ae) is the standard quantum logic 
(Piron, 1976). By Theorem 3.1, p(A~) is an interval algebra. 

5. PROBABILITY MEASURES 

If A is an effect algebra, a morphism to:A ~ R + [ 0 ,  1] is called a 
probability measure on A. We denote by Q(A) the set of  all probability 
measures on A. Evidently, Q(A) is a convex subset of  the vector space R A 
of  all real-valued functions on A. The set of  all extreme points of  a convex 
set A is denoted by OeA. In quantum logic (Beltrametti and Cassinelli, 
1981; Greechie and Gudder, 1975; Gudder, 1988; Pt~ik and Pulmannov~, 
1991), elements of  Q(A) are called states and elements of  ae Q(A). are called 
pure states. We say that the effect algebra A admits an order-determining set 
of  probability measures iff, whenever p, qeA and o~(p)< og(q) for all 
aJ ~Q(A), it follows that p < q in A. 

The following two theorems are proved in Bennett and Foulis (n.d.). 



Sums and Products of Interval Algebras 2125 

Theorem 5.1. If  an effect algebra admits an order-determining set of 
probability measures, then it is an interval algebra. 

Theorem 5.2. Every interval algebra admits at least one probability 
measure. 

It can be shown that a scale algebra A admits exactly one probability 
measure o9 and that A is a sub-effect algebra of the standard scale algebra 
~+[0, 1] iff {o9} is an order-determining set of  probability measures on A. 
In Example 4.6, the unique probability measure o9 satisfies og(x, y) = 0 if 
y > 0 and og(x, y) = 1 if y < 0, so it fails to be order determining. If n > 3, 
the polychain Cn,,, in Example 4.7 admits exactly one probability measure 
o9 given by og(x, y) = x/n; furthermore, {co} is an order-determining set of 
probability measures on Cn,,,. 

Example 5.3. Although the diamond D and the interval algebra 2 2 are 
isomorphic as posets, ~(D) consists of  a single probability measure, 
whereas f~(2 2) is affine-isomorphic to the unit interval [0, 1] ~ ~. 

6. PRODUCTS AND SUMS OF EFFECT ALGEBRAS 

Let A and B be effect algebras with units u and v, respectively. The 
Cartesian product A x B can be organized into an effect algebra with unit 
(u, v) in such a way that (al, bl) ~) (a2, bz) is defined in A x B iff al ~)a2 is 
defined in A and b~ Ob2 is defined in B, in which case, (a~, b~)~)(a2, b2).'= 
( a l ~ a 2 ,  b~Ob2). An n-fold Cartesian product A~ x A2 x �9 �9 �9 • A, is 
defined in the obvious way. 

Example 6.1. The rectangular trellis RT(n l ,n  2 . . . .  ,nr) in Example 
4.3 is the Cartesian product C , ~ x C , 2 x . . . x C ,  r of  the chains 
C, , ,  C,2 . . . . .  Cnr in Example 4.2. 

If r is a positive integer, we understand that A r is the effect algebra 
obtained by forming the r-fold Cartesian product of A with itself. In 
particular, as a poset, the effect algebra 2 r is the finite Boolean algebra with 
2 r elements, However, for r > 2, the Boolean algebra with 2 r elements, 
regarded simply as a poset, can always be organized into an effect algebra 
in more than one way. 

To form the horizontal sum A -]- B of A and B, we begin by relabeling 
the elements of  A and B, if necessary, so that A n B  ={0,  w}, where 
w = u = v. The horizontal sum is then defined to be A -i- B ..= A u B, orga- 
nized into an effect algebra in such a way that, for x, y cA q-B, x E)y is 
defined i f fx,  y~A  or x ,y~B,  in which case x ~ ) y  is defined as in A or B, 
respectively. 
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Example 6.2. The diamond D in Example 4.7 is isomorphic to the 
horizontal sum C2 4-(72 of two 2-chains. 

An n-fold horizontal sum A, q- A2 4-" �9 �9 4- An is defined in the obvious 
way. 

Example 6.3. If n is a positive integer, the effect algebra MO(n) is 
defined to be the horizontal sum 22 4- 22 4 - . . .  4- 22 of n copies of the 
interval algebra 22. As a poset, MO(n) forms a finite modular orthocomple- 
mented lattice (Kalmbach, 1983, p. 29). 

Evidently, an effect algebra C with unit w is isomorphic to the 
horizontal sum A 4- B iff there are morphisms ~: A ~ C, fl: B--+ C such that 
(i) ~t is an isomorphism of  A onto a sub-effect algebra 0t(A) of C, (ii) fl is 
an isomorphism of B onto a sub-effect algebra fl(B) of C, (iii) ~(A) c~ 
[3(B) = {0, w}, (iv) ~(A)wfl(B) = C, and (v) if xe~t(A), ye[J(B), and x ~ y  
is defined, then x = 0 or y = 0. 

If  effect algebras and their morphisms are organized into a category, 
the Cartesian product is the categorical product and the horizontal sum is 
the categorical coproduct. In this category, the tensor product of effect 
algebras A and B is defined to be an effect algebra A | B together with a 
bimorphism |  x B ~ A  |  such that (i) A |  is generated by all 
elements of the form a |  with aeA and bEB and (ii) if C is any effect 
algebra and 0: A x B ~ C is a bimorphism, there is a morphism 0': A | 
B ~ C such that O(a, b) = O'(a | b) for all a cA, b eB (Bennett and Foulis, 
1993). The interval-algebra tensor product is defined in the same way, but in 
the category of interval algebras. 

If  B is a Boolean algebra, then A | B is the Ptfik sum of A and B 
(Foulis and Ptdk, n.d.). The tensor product C, | Cm of chains is the chain 
C,,,n. 

We do not know of an example of effect algebras A and B that fail to 
have a tensor product. In Dvure6enskij (n.d.) it is shown that A | B exists 
iff there is a bimorphism with domain A x B. In Section 9 below, we show 
that any two interval algebras have an interval-algebra tensor product. We 
do not know whether the interval-algebra tensor product of interval 
algebras coincides with their tensor product in the larger category of all 
effect algebras. Related definitions of tensor products can be found in 
Dvure6enskij and Pulmannovfi (1994) and Pulmannov~i (1985). In what 
follows, we consider only the interval-algebra tensor product. 

7. C A R T E S I A N  P R O D U C T S  

For the remainder of this paper, we assume that A and B are interval 
algebras with units u and v and that G and H are the universal groups for A 
and B, respectively. 
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Note that A x B is a subset of  the Abelian group G x H. We organize 
G • H into a partially ordered Abelian group with positive cone G + • H +. 
Evidently, as an effect algebra, 

A • B = (G + • H+)[(0, 0), (u, v)] 

so A • B is again an interval algebra. Moreover, we have the following 
result. 

Theorem 7.1. With G + •  H + as the positive cone, G • H is the 
universal group with unit (u, v) for A • B. 

Proof. Conditions ( i)-( i i i )  in Theorem 3.2 are obviously satisfied. To 
verify condition (iv), assume that q~: A • B ~ K is a K-valued measure. The 
mappings ~ : A ~ K  and / ~ : B ~ K  defined by ~(a),=~b(a, 0) and 
3(b).'=~b(0, b) for aeA,  b~B  are K-valued measures; hence, they can be 
extended to group homomorphisms cr G ~ K and/~*: H ~ K ,  respectively. 
Therefore the mapping ~b*: G • H ~ K  defined by q~*(g,h)'.=~*(g) + 
3*(h) for (g, h)~G • H is a group homomorphism that extends ~b. �9 

Example 7.2. By Theorem 7.1, the rectangular trellis RT(nt,  n 2 . . . .  , r / r )  

is an interval algebra and its universal group is 2~ r partially ordered by the 
standard positive cone (7/+) r and with unit (n~, n 2 . . . . .  r / r ) .  

Let f~A '= {co ~f~(A • B)lco(0, v) = 0}, o~..= {co ~t~(A • B)lco(u, 0) = 0}. 
If COe~A and (a ,b)~A • then (0, b) <(0 ,  v), so co(0, b) =0 ,  and it 
follows that 

~o(a, b) = co((a, 0) G (0, b)) = co(a, 0) + ~o(0, b) = co(a, 0) 

Likewise, for co ~f~B, co(a, b) = co(0, b). 
The mapping # ~-* #A from f~(A) to f~(A • B) given by ]aA(a, b) = #(a) 

for all (a, b)~A • B is an affine isomorphism of fl(A) onto f~a ~_ A(A • B). 
Likewise, the mapping v ~--~vB from f~(B) to f~(A • B) given by 
vB(a, b) = v(b) for all (a, b)~A • B is an affine isomorphism of fl(B) onto 
f~B c O(A x B). Thus, in the sense of the following theorem, f~(A • B) may 
be regarded as the "convex hull" of f~(A) and f~(B). 

Theorem 7.3. If  f~(A), ~(B) # ~ and co Ef~(A x B), there is a unique 
tE~+[0,  1] and there are probability weights #6fl(A) and v~f~(B) such 
that co = tlAA + ( 1 - t)vB. 

Proof. We may assume that CO~f~A UfIB, SO that co(0, v), co(u, 0) ~-0. 
Let t .'=co(u, 0). Since co(0, v) + co(u, 0) = co(u, v) = 1, we have 1 - t = 
,~(0, v). Evidently, #: A ~ ~+[0, 1] defined by #(a) ,= co(a, 0)/t for 
all a~A is a probability measure on A. Likewise, v : B - ~ + [ 0 , 1 ]  
defined by v(b),= co(0, b)/(l  - t) for all b~B is a probability measure on B. 
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(titA + (1 - t)vB)(a , b) = tit(a) + (1 - t)v(b) 

= a~(a, 0) + o9(0, b) 

= co(a, b) 

Conversely, if 09 = titA + (1 - 0vB, then a)(u, 0) = tlt(u) = t, so t is 
uniquely determined. �9 

Evidently, if Q(B) = ~ ,  then Q(A • B) = QA and, if Q(A) = ~ ,  then 
Q(A x B) = Qe. Of  course, Q(A x B) = O iff QA = QB = J~. 

Corollary 7.4. ~e~(A x B)=~e[~f.)~ef~tj .  

Example 7.5. Because a chain Cn admits only one probability measure, 
Corollary 7.4 implies that the space of  probability measures on 
RT(n~, n2 . . . . .  n,) has exactly r extreme points. 

8. H O R I Z O N T A L  SUMS 

The universal group of  a horizontal sum of  interval algebras is 
constructed from the quotient group of  a direct product, and the following 
observation on ordering quotient groups will be used in that construction. 
If  U is a subgroup of  the partially ordered Abelian group G and 
U n G + = {0}, then G/U can be organized into a partially ordered Abelian 
group with (G/U) § = G § Indeed, G +/U is closed under addition, and 
if gl + U =  - g 2 +  U with gl,g2~G +, then gt +g2 E U n G +  ={0}; thus 
gl = -g2 ,  so that G + / U c ~ - ( G + / U )  is the zero element of  G/H. 

Let U be the cyclic subgroup of  G x H generated by (u, - v ) ,  let 
Q = (G x H)/U, and let r/: G x X---, Q be the canonical epimorphism. Thus, 
for ne7/, geG,  h e l l ,  we have 

tl(g, h) = ~(g + nu, h - nv) 

Because Uc~(G + x H +) = {(0, 0)}, it follows that Q can be organized 
into a partially ordered group with Q + = r / ( G  + x H § as a generating 
positive cone. Evidently w := r/(u, 0) = r/(0, v) is a nonzero element of Q § 
every element in Q § is a sum of  a sequence of  elements in the interval 
Q§ w], and Q+ generates Q. 

Define ~:A--,Q+[O,w] and [3: B---,Q+[O, w] by ~(a) =~/(a, 0) and 
[3(b) = rl(O, b) for all a~A, beB.  Thus, ~ and fl are effect-algebra isomor- 
phisms of  A and B onto sub-effect algebras ~(A) and fl(B), respectively, o f  
Q+[0, w]. 
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Theorem 8.1. With the notation above, Q+[0, w] = ~(A) 4- fl(B) and, 
with w as the unit, Q is the universal group for the horizontal sum 
~(A) 4-/~(B). 

Proof. Suppose tl(g,h)e~(A)c~fl(B). Then there are elements aeA, 
b ~ B, and m, n ~ 27 such that a = g + nu, h = nv, g = - mu,  and b = h - m y .  

Therefore, a = (n - m)u and b = (n - m)v.  Since 0 ~ a < u, it follows that 
n - m = 0  or n - m = l ,  and so r / ( g ,h )=0  or q ( g , h ) = w .  Therefore, 
~(A) n/~(8) = {0, w}. 

Suppose qeQ+[0 ,  w]. Since q e Q  +, there exists g e G  + and h ~ H  + 

with q = r/(g, h). Since w -  q(g, h ) ~ Q  4,  there is an integer n such that 
0 < g - - - ( n + l ) u  in G and O < h ~ - n v  in H. Therefore, n = 0  and 
q = rl(g, h ) ~ ( A )  or else n = - 1 and q = rl(g, h ) e~ (b ) .  Consequently, 
O+[0, w] = ~(A) u f l ( B ) .  

Suppose a ~ A ,  b ~ B ,  and a(a) + ~(b)eQ+[0, w], that is, w - r/(a, b) 
Q+. Then there is an integer n such that 0 < - a - < ( n + l ) u  in G and 
O < b ~ - n v i n  H, and it follows that n e { 0 , - 1 } ,  so that b = 0  or a = 0 .  
Therefore, Q+[0, w] is the horizontal sum of its sub-effect algebras co(A) 
and ~(B). 

Let ~b: Q+[0, w] ~ K  be a K-valued measure. To complete the proof, 
we only have to show that ~b can be extended to a group homomorphism 
q5*: Q---, K. The K-valued measures ~b o a: A ~ K  and ~b o 8: B ~ K  can be 
extended to group homomorphisms ( q b o ~ ) * : G ~ K  and (~bofl)*: 
H ~ K .  The group homomorphism ~: G x H ~ K  defined by ~(g, h ) =  
(~b o a)*(g) + ($ o fl)*(h) satisfies the condition r - v )  = 0, so there exists 
a group homomorphism ~b*: Q ~ K  such that $ * o r / =  ~. For a ~ A ,  

~b*(~(a)) = ~b*(r/(a, 0)) = ~(a, 0) = (~b o ~)*(a) = ~b(cc(a)) 

and likewise, q~*(l~(b))= r Because Q+[0, w] =~(A)u/~(B), it fol- 
lows that ~b* is an extension of qS. �9 

We omit the straightforward proof of the following theorem. 

Theorem 8.2. If fl(A), f~(B) v~ ~5, the mapping O: fl(A) x f~(B) 
fl(A 4- B) given by 0(#, v)(x) =/~(x) for x ~ A  and O(#, v)(x) = v(x) for x e B  

is an affine isomorphism of f l (A)x  f~(B) onto f~(A 4- B) and * maps 
~3,.fl(A) • 8~f~(B) onto 6~e~'](A w B).  

As a consequence of Theorem 8.2, a horizontal sum of polychains of 
height three or more admits only one probability measure. 

In the next theorem, we illustrate the use of Theorem 8.1 by comput- 
ing the universal group of the horizontal sum C, 4- C,, of two chains. We 
denote the additive group of integers modulo d by Za, with the understand- 
ing that 7/~ = {0}, and we denote the canonical epimorphism 7/~ 7/d by 3. 
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Theorem 8.3. Let n, m be positive integers, let d be the greatest common 
divisor of  n and m and let h and k be integers such that hn + km= d. 
Let J : = Z  x 7/d and J+:={(mx/d+ny/d, 6(hx-ky))[(x,y)~2v+ x Z+}. 
Then J is partially ordered by the cone J+  and, with w ..= (nm/d, 6(0)) e J+ ,  
J is the universal group for J§ w]. Furthermore, the mappings 
ct: C,, ~ J + [ 0 ,  w] and fl: C,, --*J+[0, w] given by ~(x) ,=(mx/d,  6(hx)) and 
fl(y),=(ny/d, 6(-ky)) for xeC,=Z+[O,n] and yeCm=~-+[O,m] are 
effect-algebra isomorphisms of  Cn and Cm onto sub-effect algebras ~(C,) and 
fl(Cm) of  J§ w]. Also, J+[0,  w] = ct(C=) ~ fl(C,,). 

Proof We sketch the proof, leaving the details to the interested 
reader. The mapping W:Z x 2 v ~ j  defined for (x,y)~7_ x Z by 
tF(x, y),= (mx/d + ny/d, 6(hx - ky)) is a group epimorphism and ker(W) is 
the cyclic subgroup U of  Z x Z generated by ( n , - m ) .  Therefore, if 
q: ~' x 2Z~Q. .=(Z x Y_)/U is the canonical epimorphism, there is a group 
isomorphism ~: Q ~ J  such that ~(q(x, y ) ) =  W(x, y). Using the isomor- 
phism r we obtain the present theorem directly from Theorem 8.1. �9 

As a corollary of  Theorem 8.3, we note that if n and m are relatively 
prime, then the universal group of  C, ~ Cm is isomorphic to J. '= 7/with the 
nonstandard cone J+  ..= {mx + nYlx, yeZ  + } and with the unit w..=nm. 
Under this isomorphism, (7, corresponds to {mxlx~C.} and Cm corre- 
sponds to {nyly �9 Cm )" 

Example 8.4. Using Theorem 8.1 and mathematical induction on n, it 
can be shown that MO(n) in Example 6.3 can be realized as G+[0, u], 
where G = Z  "+1, u..=(1, 1, 1 . . . . .  1), the 2n + 2  elements of  MO(n) are 
0, u, the n elements a l . ' = ( 1 , 0 , 0 , 0  . . . . .  0), a2 . '= (1 ,1 ,0 ,0  . . . . .  0), 
a 3 : :  ( 1, 1, 1, 0 . . . . .  0) . . . .  , a= .'= ( 1, 1, 1, 1 . . . . .  1, 0), and n more elements 
of  the form bi.'= u - a; for i = 1, 2 . . . . .  n. Here G + is the subcone of  the 
standard positive cone (Z§ +~ consisting of  all nonnegative-integer linear 
combinations of  al,  a2, �9 �9 �9 an, bl, b2 . . . . .  and b,. 

The interval algebra MO(n) in Example 8.4 is the quan tum logic 
affiliated with measurements of  the spin component in n different directions 
of  a spin-l/2 particle, and MO(n)| MO(n) is the quantum logic for the 
anticorrelated spin experiments used to test the Bell inequalities (Kl/iy, 
1988). Using the result of  Example 8.4 and Theorem 9.1 in the next section, 
we can compute the universal group of  MO(n)| MO(n). 

9. TENSOR PRODUCTS 

The tensor product G | H of  the Abelian groups G and H can be 
organized into a partially ordered Abelian group with positive cone 
(G | H)  § consisting of  all sums of  finite sequences of  pure tensors of  the 
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form g |  with g~G + and h~H + (Goodearl  and Handleman; 1986, 
Proposition 2.1). 

Theorem 9. I. With (G | H)  § defined as above: 
(i) If #~f~(A) and v ef~(B), there is a group homomorphism 

r 1 7 4  such that tr(a| for all aeA = 
G+[0, u], b~B = H+[0,  v]. 

(ii) O v ~ u | 1 7 4  + 
(iii) (H | H)  § is a generating cone in G | H. 
(iv) Every element in (G | H)  + is the sum of a finite sequence of 

pure tensors a |174 u Qv] for a~A, beB. 
(v) As an effect algebra, (G @ H) § u @ v] is generated by all pure 

tensors of the form a |  with a~A, b~B. 
(vi) If K is an Abelian group and O:A •  is a K-valued 

bimeasure, there exists a group homomorphism 0": G |  ~ K  
such that O*(a |  O(a, b) for all aeA, b~B. 

(vii) With the mapping A • 1 7 4 1 7 4  given by 
(a, b) ~ a @ b as the canonical bimorphism, (G @ H) +(0, u @ v) 
is the interval-algebra tensor product of the interval algebras A 
and B. 

(viii) G Q H  is the universal group for the interval algebra 
(G | H)  +[0, u | 

Proof. (i) Let p eft(A), v eft(B). Because G and H are the universal 
groups for A and B, we can extend p and v to group homomorphisms 
p * : G ~ R  and v * : H ~ R .  Since the mapping G •  given by 
(g,h) v--~#*(g)v*(h) is a group bihomomorphism, there exists a group 
homomorphism t r : G @ H ~ R  such that a(g| for all 
g~G, h~H. 

(ii) By Bennett and Foulis (n.d.), Theorem 6.7, there are probability 
measures p ~f~(A), v Eft(B) with #(u) --- v(v) = 1. Let tr be the corresponding 
group homomorphism as in (i). Then a(u | v) = p(u)v(t,) = 1, so u | v :~ 0. 

(iii) I fgeG,  and h~H, we can write g = g a - g z  and h = h a -  hz, with 
ga,g2eG + and ha, h2eH § and it follows that 

g |  = (g~ | +g2| - (ga| +gz| |  + - (G |  + 

Since every element in G | H is a sum of pure tensors g | h, it follows that 
(G | H)  + is a generating cone for G | H. 

(iv) If a~A, beB, then 0 < a < u  in B and 0_<b<_v in H, so 
0 < a |  < u |  in G |  If g e G  § and h ~ H + ,  then g = ~ i a i  and 
h = ~ bj for aieA and bjeB, and it follows that g | h = ~i  ~_.j a~ | bj with 
a~ | | H) +[0, u | 
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(v) If t e (G|174  then t =~ia i |  with a~eA, b~eB by 
(iv) and, since t < u |  we have t =  ~)~ai| in the interval effect 
algebra (G |  +[0, u | 

(vi) See Foulis and Bennett (1994), Theorem 9.4. 
(vii) By (v), (G |  u | is generated as an effect algebra by all 

a | aeA,  beB.  Suppose that C is an interval algebra with unit w and 
universal group K, and let O:A • B ~ C  be a bimorphism. Then 
0: A x B--,K is a bimeasure, so it induces a group homomorphism 
0": G |  as in (vi). We have O*(u | = O(u, v) = w and, by (iv), 0* 
maps ( G |  + into K +, so the restriction of 0* to the interval 
(G|  u|  provides a morphism 0': (G|  u|  ---, 
K+[0, w] = C such that O(a, b) = O'(a |  for all aeA,  beB. 

(viii) Let (k: (G|  u |  be a K-valued measure. The 
mapping O:A x B - - , K  given by O(a,b):=dp(a| for aeA,  beB  is a 
K-valued bimeasure, so, by (vi), there exists a group homomorphism 
4*: G |  K such that ~b*(a | = O(a, b) = (~(a | for all aeA,  beB, 
and it follows from (v) that ~b* is an extension of (k. Therefore, by 
Theorem 3.2, G | H is the universal group for (G | H)+[0, u | v]. �9 

10. x-ALGEBRAS 

Cartesian products, horizontal sums, and tensor products have per- 
spicuous interpretations in quantum logic (Foulis, 1989). For instance, M. 
Kl/iy (1988) has made effective use of MO(2) | MO(2) to study the Bohm 
version of the EPR Gedankenexperiment. This suggests that the following 
problem warrants consideration: 

The CHT Problem. Given a class cd of effect algebras, characterize the 
class CHT(qf) consisting of the effect algebras in ~ and all effect algebras 
that can be obtained from these algebras by iteratively forming finite 
Cartesian products (C), horizontal sums (H), and tensor products (T). 

For a more general CHT problem, the word "finite" may be omitted. 
If only Cartesian products and horizontal sums are allowed, the 

corresponding "CH" problem was solved for cd = {2} by Dacey (1968). 

Dacey's CH(2) Theorem. An interval algebra A can be obtained 
starting with copies of 2 and iteratively forming finite Cartesian products 
and horizontal sums iff A is a finite orthomodular lattice and there do not 
exist four distinct atoms a, b, c, and d in A such that a 09 b, b 0) c, and c @ d 
are defined and a ~ c, b ~ d, and a ~ d are not defined. 

In this section, we make a modest start on the problem of characteriz- 
ing CHT(2) by singling out a class of finite interval algebras that contains 
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2 and is closed under the formation of finite Cartesian products, horizontal 
sums, and interval-algebra tensor products. 

If X is a nonempty set and M __. X, the characteristic set function 
~(M : X ~ {0, 1 } ~ 7/is defined as usual by XM(x) .'= 1 if x EM and XM(x) .'= 0 
if x e X \ M .  If the group 2 ~x is partially ordered by the standard positive 
cone (Z+) x, then the interval algebra (714)x[0, Xx] consists of all the 
characteristic set functions XM for M _  X; hence, as a poset, it is isomor- 
phic to the power set of X. We refer to Xx as the standard unit in the group 
7/x. 

Definition 10.1. An interval algebra A is called a x-algebra over X iff 
the universal group of A is G := 7/x, the positive cone of G is contained in 
(7/+)x, and the unit is u'=Xx. 

By the following lemma, every element of  a g-algebra over X is a 
characteristic set function for a subset of X, so x-algebras are closely 
related to the concrete logics of Ptfik and Pulmannovfi (1991, p. 2). 

Lemma 10.2. Let X be a nonempty set, let G := Z x be partially ordered 
by a positive cone G 4, let u = Xx ~ G be the standard unit, and suppose that 
G is the universal group with unit u for G+[0, u]. Then G 4 ___(Z+)x iff 
G 410, u] consists only of  characteristic set functions. 

Proof If G + ~(7/+)x, g~G+[O,u], and xEX, then g ( x ) ~  + and 
u(x) - g ( x )  = 1 -g(x)ET/+, so g(x) is either zero or one. Conversely, if 
every function g s G + [ 0 ,  u] takes on only the values zero and one, then 
G+[0, u] ___(7/+)x and, since every element in G + is a sum of a finite 
sequence of elements of G+[0, u], it follows that G + ~ (7/+)x. II 

If  we say that A is a x-algebra, we mean that it is (or is isomorphic to) 
a z-algebra over some nonempty set X. As an obvious consequence of 
Lemma 10.2, a x-algebra cannot contain any isotropic elements, and 
therefore every x-algebra is an orthoalgebra. 

By Example 4.3, 2" is a x-algebra over X..={1, 2, 3 , . . . ,  r} and, by 
Example 8.4, MO(n) is a ~-algebra over X..= { 1, 2 . . . . .  n + 1 }. Since the 
universal group of  a x-algebra must be torsion-free, the polychains of 
height three or more and the diamond in Example 4.7 give examples of 
interval algebras that are not x-algebras. 

Lemma 10.3. If  A and B are x-algebras, so are A x B and A -i- B. 

Proof Let A = G + [ 0 ,  u], B = H + [ 0 ,  v], G = 7 / x ,  H = 7 / r ,  G + ~_ 
(Z+) x, and H + ~_ (7/+) r, with standard units u and v, and suppose that G, 
H are the universal groups for A, B, respectively. Without loss of  general- 
ity, we may assume that X c~ Y = ~ ,  so that, in what follows, we can make 
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the canonical identification of  G x H = Z x x Z r with Z x~ r by regarding 
an ordered pair (g, h)~G x H as the function on X u Y defined by 
(g, h)(x) = g(x) for x e X  and (g, h)(y) = h(y) for y e  Y. Note that (u, v) is 
then the standard unit in Z x ~ r  and (g ,h )E(Z+)  x€  iff g ~ ( Z + )  x and 
h e ( Z + )  r. Therefore, A x B is a z-algebra by Theorem 7.1. 

Let U be the cyclic subgroup of  G x H generated by (u, - v )  and let  
q: ZXu r_~ Q,= Zxu  f lU be the canonical epimorphism. Choose and fix 
a~X,  b e Y ,  let Z , = X u Y \ { b } ,  R , = Z  z, and define the epimorphism 
�9 : Z x ' Y ~ R  by 

~g(z) + h(b) if z ~X 
�9 (g, h)(z) ,= ~g(a) + h(z) if  z e Y\{b } for all z EZ 

Since ker(~) = U, there is an isomorphism 4~: Q ~ R  such that ~b o t / = ~ .  
Under this isomorphism, we identify the universal group Q in Theorem 8.1 
with R, noting that the unit in R is the standard unit. If  either g is a 
characteristic set function and h = 0 or g = 0 and h is a characteristic set 
function, then ~(g, h) is a characteristic set function; hence, by Lemma 
10.2, R + ,= ~b(Q +) _c (Z+) z, and it follows that A q- B is a z-algebra. [] 

If  A is a z-algebra over a finite set X = {x~, x z , . . . ,  x ,} ,  it is clear 
from Lemma 10.2 that A can contain at most 2" elements. Conversely, if A 
is a finite z-algebra over X, then the group Z x has a finite set of  generators, 
namely A; hence, it has finite rank, so X is a finite set. 

Lemma 10.4. If  A and B are finite z-algebras, then so is the interval- 
algebra tensor product A | B. 

Proof We use the same notation as in the proof  of  Lemma 10.3, but 
assume that X and Y ~re finite sets. Then there is a canonical isomorphism 
~b: G | H --* S ".= Z x • r such that, for g ~ G, h ~ H, x ~X and y ~ Y, we have 
qJ(g | h)(x, y) = g(x)h(y) eZ.  Note that ~(u | v) is the standard unit in S 
and that, if g and h are characteristic set functions, so is ~b(g, h). Therefore, 
by Theorem 9.1 and Lemma 10.2, S+[O,~O(u| is effective as the 
universal group for an isomorphic copy of  A | B and S + is contained in 
the standard positive cone (Z+) x• v. [] 

Example 10.5. Let G : = Z  4 be partially ordered by the cone 
G + , = { ( x , y , z , w ) ~ ( Z + ) 4 [ x + y  + z  ~ w}. Then the z-algebra A , =  
G+[(0, 0, 0, 0), (1, I, 1, 1)], which contains exactly 14 elements, is the 
smallest proper orthoalgebra, i.e., the smallest orthoalgebra that is not an 
orthomodular poset. It is the logic of the Wright triangle (Foulis et al., 
1992, Example 2.13) and it does not belong to CHT(2).  There are exactly 
five elements of  O,.(tl(A)), four of  which are given by the restrictions to A 
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of the projection mappings nx, ny, ~ ,  row on Z 4. The fifth is the restriction 
to A of �89 + ny + rt: - n,,) corresponding to the condition x + y + z -> w 
that determines G +. 

By Lemmas 10.3 and 10.4, every effect algebra in CHT(2) is a finite 
z-algebra; hence, it is an orthoalgebra. However, by Example 10.5, there 
are finite z-algebras that are not in CHT(2),  so the problem of characteriz- 
ing CHT(2) remains open. 
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